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Previous research on cognitive radios has addressed the performance of various machine-
learning and optimization techniques for decision making of terrestrial link properties. In
this paper, we present our recent investigations with respect to reinforcement learning
that potentially can be employed by future cognitive radios installed onboard satellite
communications systems specifically tasked with radio resource management. This work
analyzes the performance of learning, reasoning, and decision making while considering
multiple objectives for time-varying communications channels, as well as different cross-
layer requirements. Based on the urgent demand for increased bandwidth, which is being
addressed by the next generation of high-throughput satellites, the performance of cogni-
tive radio is assessed considering links between a geostationary satellite and a fixed ground
station operating at Ka-band (26 GHz). Simulation results show multiple objective per-
formance improvements of more than 3.5 times for clear sky conditions and 6.8 times for
rain conditions.

I. Introduction

Software-defined radio (SDR) technology has enabled numerous advances in wireless communications
technologies for both terrestrial and satellite-based communications. For example, several channel access

and fading-mitigation technologies for spectrum sensing1 and adaptive coding and modulation (ACM)2 have
been developed and tested using SDR prototypes. However, the next technological leap for SDR is expected
to be the implementation of onboard cognition, which can potentially provide the SDR platform with envi-
ronmental awareness across several Open Systems Interconnection (OSI) layers,3 real-time knowledge of the
current channel conditions, status of its communicating nodes and the network, and assessment of its own
available resources. Such information is very important for optimizing communications link performance.

Within the past 15 years or so, several optimization algorithms such as genetic algorithms4 have been
applied to cognitive radios (CRs).5 These optimization techniques do not always converge and might take
several hundred or even thousands of iterations, e.g. algorithm runs, until a stable solution is found. Changes
in the environmental conditions would require another series of iterations in order to search for a new solution,
increasing latency. Also, if these same scenarios repeat, the system is unable to use previous solutions given
that it cannot learn. Learning is considered to the be cornerstone of artificial intelligence (AI). Therefore,
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CR systems must somehow consider its principles, thorough technique implementations, in order to leverage
true CR capabilities.

Machine learning (ML) techniques have been studied with respect to their approach to CR, thus address-
ing the learning issue.6–9 Both approaches, optimization and ML, have been studied in order to determine
how they can assist CR systems with respect to finding the best configuration parameter set, with the
majority of research focused on spectrum management, including sensing techniques, for terrestrial links.9

The scenario is the same for satellite links, with the majority of CR research focused on spectrum resource
allocation,10,11 and to the best of the authors’ knowledge, almost none on radio resource management.

Figure 1. Diagram block of reinforcement learning elements within the feed-
back loop for a down-link pair with the receiver at ground and transmitter in
space. At, Rt and St are the action, state, and reward at time t, respectively.

Consequently, the aim of
this paper is to analyze the
framework of a cognitive-
engine that enables a satellite-
based CR to learn, reason,
and make decisions over mul-
tiple available resources and
multiple goals based on its
past experiences. Regard-
ing a satellite communications
channel, some additional fac-
tors play a significant role that
are not considered in terres-
trial links including orbital dy-
namics, such as spacecraft tra-
jectory, velocity, and antenna
elevation angle profile, space
weather, spacecraft mission, and payload status.

All of these factors magnify the complexity of the decision-making process being performed by the CR
since the dimensionality of the multi-objective function, radio resources, and end-to-end link conditions are
much more diverse than a point-to-point terrestrial link. Not only does the resource management complexity
for satellite-based CR increase, but also the learning, reasoning, and decision-making algorithms that must
be redesigned in order to cope with all these new challenges while operating in a dynamically changing and
complex environment.

Based on the increasing demand for high-throughput satellite-based communications systems, the need
for CR systems operating on board satellites possessing different orbits at the same time, with nodes spread
throughout the Earth experiencing very different channel conditions, is of high importance and requires
additional research.

In 2012, NASA Glenn Research Center (GRC) installed the Space Communications and Navigation
(SCaN) Testbed12 on-board the International Space Station (ISS) and continues to operates the testbed from
a mission control center at GRC. The SCaN Testbed is an experimental communication system comprised
of three different SDRs,13,14 and is the first space-based testbed of its kind available to selected researchers
to propose implementation solutions to address issues related to SDR-based communications systems to
and from space. The radios operate at S-band and Ka-band with NASA’s satellite relay infrastructure
i.e., Tracking and Data Relay Satellite System (TDRSS), and S-band direct-to-ground stations on Earth.
The communication links to and from the SCaN Testbed provide real-world satellite dynamics between user
spacecraft and relay satellites and user spacecraft directly with ground stations. These dynamics include time-
varying Doppler changes, thermal variations, differences in waveform characteristics, real-time interference,
significant range variation, ionospheric effects and scintillation, and other propagation impairments.

The radios onboard the testbed are flight-grade systems, fully compliant with NASA’s SDR archi-
tecture, the Space Telecommunications Radio System (STRS).15,16 The STRS Architecture provides ab-
straction interfaces between radio software and proprietary hardware (general-purpose processors and field-
programmable gate array processors), allowing third-party software waveforms and applications such as the
CR system software to interact and run on the radio. STRS also makes a library of waveforms available
to developers to provide various modulation, coding, framing, and data rate options (the so-called radio
“knobs”) available to the decision-making algorithms.

Solutions such as adaptive communications based on cognitive decision making needs to be researched, not
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only to solve communications issues on Earth, but also to allow the development of systems that will enable
space exploration in the near future.17 SDRs will become a larger part of the communications infrastructure
as exploration continues over the next decade. These flexible and reconfigurable systems are generally more
complex than traditional fixed-operation radios and CR systems offer a solution to reduce the complexity
and risk associated with these new systems. The work presented in this paper is part of this effort, providing
CR algorithm research and development for SDR systems in space.

This paper covers the performance analysis of a reinforcement learning (RL) technique for satellite-based
CR at Ka-band (26 GHz). It starts with an overview of RL in Section II. The proposal framework design
and a numerical evaluation are provided in Section III. The system environment is covered in Section IV.
Simulation results and performance analysis are provided in Section V. Section VI provides an overview on
the application of cognitive engines for NASA. Final comments and concluding remarks of the proposed
approach are given in Section VII.

II. Reinforcement learning overview

The classical multi-armed bandit (MAB) problem18,19 is one approach for modeling problems in which
one must choose the best combination of options that will result in the largest reward. In MAB problems, it
is assumed that K independent arms generate independent rewards from a family of probability distributions
each time an arm is played. A policy chooses the arms to be played, known as the action, which results in a
regret each time a non-optimal arm is played. Several publications have applied MAB to CR-related issues.
For instance, references 20–22 modeled cognitive-medium access problems as a MAB problem.

A MAB problem can also be modeled as a state-transition problem. As such, a chosen action might end
up causing a system to change its state, given a certain environment. Thus, the state–change itself can be
modeled as a Markov decision process (MDP).23 State transitions can be deterministic, i.e., a given action
taken while in a given state always brings the system to the same state or stochastic, i.e., next state is a
random variable. This paper considers the deterministic case only. MDPs are also categorized based on its
model. If a state-transition model exists, the algorithm employed is known as Dynamic Programming (DP).
If the MDP is model-free, it is known as a Reinforcement Learning (RL) approach. Within the RL class,
the algorithm starts without a model, and either builds one online or does not use a model at all, in which
case it is known as an RL Q-learning algorithm.

RL, thoroughly described in reference 24, is one of several techniques used to solve MAB problems. It
is designed to learn and optimize while operating in an unknown environment without prior knowledge.
Thus, RL is among the best options to be used when a system model is too difficult/complex to obtain, or
inexistent. This technique aims to provide an agent, learning about an environment with the goal of building
the “best model” of the “real-world” using noisy observations. After building the model, the system attempts
to pick the best action that brings it closest to the operational goal, based on the set of actions available to
it at the moment. Next, after choosing an action based on a certain policy, the system interacts with the
environment and, as a result, a new state is observed together with a new reward. The reward is a metric
of how close to the operational goal the chosen action brought the system.

As shown by Figure 1, a RL-based system has an agent element, which chooses an action using a certain
policy at an attempt to optimize its rewards. While doing this, the employed policy might tackle the trade-
off issue between exploration and exploitation. When trying new actions randomly, the system is exploring.
When exploiting, it is choosing those actions previously attempted that resulted in the best rewards so far,
given the expected state. The attractiveness of this approach is that, independent of being in either an
exploiting or exploring mode, the system is always reinforcing its learning for a certain state in terms of
rewards for actions taken while operating in that state.

The way RL records its performance is through the computation of a Q-function for a Q-learning algo-
rithm:

Qk+1(sk, uk) = Qk(sk, uk) + αk[rk+1 + γQk(sk+1, uk+1)−Qk(sk, uk)], (1)

which is derived from the well-known Bellman equations.1 The Q-function computes the updated Q-values,
Qk+1(sk, uk), for the state-action pair (sk, uk), where sk and uk are the state and action, respectively, at
instant k. The reader may notice uu′ , which means any action. αk ∈ [0, 1) is the learning rate at instant k,
γ ∈ [0, 1) is the discount factor, and rk+1 is the reward received after the transition from state sk to sk+1.

1The interested reader is referred to references 23,24 for the derivations
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γ weights how the agent accounts for accumulated rewards, i.e., obtained after a large number of steps that
can be taken in future given that a certain action is taken in the present. Choosing values for both α and
γ involves a trade-off between the quality of the solution and the convergence rate and are left as designer
parameters. In this paper it was assumed that α decreases every time an action is used recursively.

Within the context of decision-making of radio communication parameters, the time-difference portion
of Eq. 1 can be taken for granted. Based on the idea of taking the best known action, based on accumulated
knowledge over the past, in order to achieve the best performance on the next step, completely removes the
need of a discount factor for possible actions that could be taken from the next one. In other words, the
achievement of any performance level is independent of previous actions already taken, besides the knowledge
they have provided. Thus, a modified version of Eq. 1 may be used, i.e.,

Qk+1(sk, uk) = Qk(sk, uk) + αkrk+1. (2)

Although a model for the environment is not necessary, it is required for the definition of some functions,
for instance, a state–action policy h

uk = h(sk), (3)

responsible for the trade-off between exploration and exploitation, a state-transition function g

sk+1 = g(sk, uk), (4)

a reward function ρ
rk+1 = ρ(sk, uk), (5)

and some parameters as described above. It is worth noting that for a model-free RL g is not required, since
the sk+1 is simply observed.

There are several challenges regarding the practical implementation of RL. Among them are the choices
of learning and discount parameters, as well as the definition of Eqs. (3)–(5). Regarding the policy function,
there are three algorithms that define how the policy is defined: value iteration (searches for the maximum
Q-value, which is used to compute the optimal policy), policy iteration (iterates through a set of policies,
evaluates their results, and builds a new set to be evaluated in the next iteration), and policy search (com-
putationally heavy and consists of using optimization techniques to search for the optimal policy directly).

Regarding policy iteration, policy evaluation can be performed off-line (off-policy), with the evaluation
being done only after the Q-function converges, or on-line (on-policy), which is known as SARSA2 and
replaces maxu′ Qk(sk+1, uu′) by Qk(sk+1, uk+1), considering the action chosen for the next step. All the
following work considers the class of deterministic RL Q-learning on-policy, i.e., the SARSA category with
the caveat that there is no time difference term nor discount factor, for the reasons mentioned above.

III. Framework Design

A. Goals and Rewards

Within a general communication system, the RL agent is located at the receiver and feeds the output control,
i.e., the action, back to the transmitter, as shown by Figure 1. A key requirement for any RL algorithm is
to define its goal. In this case the authors propose a goal given by a decision function, based on the current
communications mission-phase objectives, constraints, and the overall maximum performance possible to
achieve, which is limited by hardware. Thus, the approach taken here consists of defining that state as a
percentage of the current goal. Then, the RL agent might choose actions, i.e., a new set of radio parameters
that may bring this system closer to the “goal state”, represented by 100% of the current goal. A threshold
must be set so that any chosen action that brings the system performance above the threshold is recognized
as part of the solution set by a reward. These actions are described in the following subsection.

In this paper communication channels are assumed to be a Markov process, with the current channel
state being independent from the previous states. Thus, every time an RL agent chooses an action the
system can be sent to any possible state. Besides choosing actions, another role of the RL agent is to build
a knowledge base based on previous experiences, i.e., to learn. In order to keep track of results of its chosen
actions, as well as to support future action choices, the agent receives rewards, which measure how close to
the goals the system was able to get using a certain action.

2Initials of the elements in the data tuples: state, action, reward, (next) state, (next) action (SARSA).
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Figure 2. State change concept for communications system Markov process.
Rewards are given for actions that sends the system to states that are above
a certain threshold. No rewards are given otherwise. Even if the previous
state was rewarded, if a different action results in an state above threshold it
must be rewarded.

Only actions that bring
the system from any previous
state to a state above the de-
fined threshold receive a re-
ward, otherwise no reward is
given. Doing so, the system
“reinforces” actions that make
the system achieve its goals, as
illustrated by Figure 2.

In this paper, the goals
for a communications sys-
tem are: maximizing through-
put (R), minimizing bit error
rate (BER), minimizing power
consumption (P ) to maximize
on-board satellite battery life,
and keeping the bandwidth W
constant.3 An analysis is provided based on the proposed approach for using RL to handle the cases when
multiple goals are required during a certain satellite communications mission phase.

These goals are achieved individually by parameter adaptation, such as bit rate R, modulation scheme M
(hereafter comprised of modulation type and index, and coding rate), available power Pmax for transmission
(then Eb is enabled to adapt as well). In the following, we provide relationships between the adaptable
parameters, presented as equations for the individual goals.25 The parameter W can be computed by

W =
NR

2 log2(M)
, (6)

where N is the number of orthogonal dimensions in the modulation constellation, e.g., N = 2 for QAM. M
is the constellation size of the modulation scheme being used. P is given by

P = R Eb, (7)

where Eb is the energy per bit. For two-dimensional modulation schemes, the parameter P can be rewritten
as

P = W log2(M) Eb. (8)

Based on the bit error probability equations provided in reference 25, BER relates to the previous equations
by

BER ≈ 1

Eb
, (9)

for a fixed M , and by
BER ≈ log2(M), (10)

for fixed Eb. When both M and Eb are varied at the same time, there is a nonlinear relationship with BER.
Thus, the cognitive engine must learn how to tune these parameters while considering other objectives.

Clearly, there are several trade-offs while adapting R, M , P , W , and BER in order to achieve a certain goal.
Adaptation of these parameters for one goal might affect the achievement of other goals at the same time.
These adaptation consequences are described in Table 1.

Attempting to achieve multiple goals at the same time can cause resource competition. An approach to
minimize this dispute is to prioritize each goal individually using weights. Thus, communications mission
phases are defined such that, for each mission, a predefined set of weight values, vector w̄, is used during the
decision-making process. Therefore, the goal of the approach presented is to maximize

fdecisionmax
(x) = w1fmax(R) + w2fmin(BER) + w3fmin(P ) + w4fconstant(W ), (11)

with w̄k = (w1k
, w2k

, w3k
, w4k

), 0 < w1k
, w2k

, w3k
, w4k

< 1,
∑n

i=1 w̄ik = 1, and x̄k = (Rk,BERk, Pk,Wk),
which is a vector containing the observed values after choosing an action ūk = (Rk,Mk, Ebk) containing

3Although a decrease in W could be beneficial for cooperation, for critical missions it could end up attracting secondary
users that could cause interference.
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Table 1. Radio parameter adaptation inter-relationship

Adaptation Goals Consequences Conflicts Constants

↓ M min(BER), min(P ) ↓ R,P ,BER max(R) Eb

↑ M max(R) ↑ R,P ,BER min(BER), min(P ) Eb

↑ R max(R), W const.* ↑ W ,P min(P ), W const.* M , Eb

↓ R min(P ), W const.* ↓ W ,P max(R), W const.* M , Eb

* Keeping W constant can be a goal or a conflicting goal while adapting Rs.

the adaptable parameters. Among the observed values, values of Rk, Pk, and Wk are monitored at the
transmitter and sent to the receiver, where BER is estimated in real time at the receiver, by using Eq. 17
in reference 26, which requires Eb/N0 to be obtained by SNR measurements.

fmax,min is a normalized value of each element of x̄, based on the current system’s available parameter
ranges,

fmax(R) =
R

Rmax
, (12)

fmin(BER) =
BERmin

BER
, (13)

and

fmin(P ) =
Pmin

P
, (14)

with the exception of fconstant(W ), which is computed as:

fconstant(W ) =

0, if W ≤ BW,

−1, if W > BW,
(15)

where BW is the bandwidth allocated to the communication channel of concern.
In order to reward a chosen action ūk = (Rk,Mk, Ebk), the same assumptions supporting the derivation

of Eq. 2 are valid to consider Eq. 4 as
sk+1 = fdecisionk

(x̄k), (16)

computed using the same structure of Eq. 11, where x̄k = (Rk, BERk, Pk,Wk) is observed at the receiver,
which results in fdecisionk

(x̄k) reflecting the effects of the combined uncertainty imposed by both channel
impairments and spacecraft orbital dynamics. Therefore, values for rk+1 in Eq. 2 are given by

rk+1 =

fdecisionk
(x̄k), if fdecisionk

(x̄k) > tr,

0, otherwise,
(17)

where tr is a threshold value that guarantees that only actions that brought the system performance above a
certain level should be accounted for in the learning process. Rewards computed that have a value less than
the threshold do not represent a successful action choice, given the current channel environment. Thus, it
must not be reinforced and should be forgotten instead.

For simulation purposes, Table 2 shows the communication mission phases considered throughout this
paper, with a suggestion for their respective weight vectors w̄. Each mission phase is composed of some
individual objectives, four in this case, demonstrating the multi-objective optimization facet of the proposed
RL learning. Each objective is affected somehow by the combination of several impairment sources such as
current weather conditions encountered by the line-of-sight (LOS), spacecraft orbital dynamics and on-board
electronics status, etc., described in the next section.
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Table 2. Communication mission phases, objectives and weights

Mission

Objectives
w1 : max(R) w2 : min(BER) w3 : min(P ) w4 : constant(W )

1 - Launch/Re-entry 0.1 0.6 0.2 0.1

2 - Multimedia 0.6 0.3 0.05 0.05

3 - Power saving 0.2 0.1 0.6 0.1

4 - Normal 0.25 0.25 0.25 0.25

5 - Cooperation 0.1 0.2 0.1 0.6

B. Actions

An action u, as mentioned in Section III-A, consists of a set of radio parameters that can be employed by an
SDR platform. When choosing an action, the agent might first decide if it should explore new actions in order
to expand its knowledge about the current environmental conditions, or if it should exploit already known
actions that resulted in bringing the system above the state’s threshold tr in the past. It is worth noting
that, while following a certain algorithm to choose an action, the decision-making process can be informed by
additional knowledge of certain communication channel conditions, reading from external sensors, databases,
or predictors such as the Interacting Multiple Model (IMM) proposed by the authors in reference 27. The
bias can be inserted directly into the decision function or indirectly as a modification of the main goal of the
current mission. The following sections cover the mathematical portion where this term is implemented.

Several methods were proposed in reference 24 to solve the explore–exploit trade-off. They propose
the classical εk-greedy algorithm with ε ∈ (0, 1), which represents the exploration probability with uniform
distribution that also picks a uniformly-distributed random action, with exploitation on the remaining portion
of time. Since εk is function of k, it should decrease as the time goes by in order to reflect the system-learning
capability, i.e., explore more during the first steps.

One of the main challenges with εk is that it requires manually tuning. The adaptive εk, value-difference
based exploration (VBDE), was proposed to adaptively change the εk value based on a temporal-difference
error, making the εk value a function of state, i.e., εk(xk).28,29 Other common solutions for the exploration
versus exploitation problem include the Boltzmann exploration,24 probability matching,30 contextual ban-
dit,31 on-line clustering,32 etc., each requiring its own functions and parameters, usually a designer’s choice.
This work considers the classic εk-greedy algorithm, and analyzes the multi-objective performance with both
fixed and varying ε values.

C. Algorithm

We begin with several general comments regarding the operation of Algorithm 1. During the mission, the
range of radio parameters might change due to system upgrades or failures. When this is the case, Ū , a
matrix containing all the current possible adaptable combinations (for instance, R, M , and Eb) must be
updated.

The proposed RL method requires knowledge of the observable xk = (Rk,Wk, Pk,BERk). Due to the
impairments imposed by the current channel conditions, each different action might result in a specific overall
performance, measured by fdecisionk

(xk), that has the same structure as Eq. 11.
While deciding its actions, the agent uses policy h to choose an action uk, an entry from matrix Ū . This

policy is detailed in the Section V, and covers how the exploit–explore trade-off was treated. Based on the
goals of the current communications mission, which are multi-objective, a vector of weights w̄ is chosen.
Next, the agent chooses an action, forwards the parameters set to the transmitter, which sends data back
using that radio configuration. Finally, the receiver takes measurements, computes the next state and next
reward, and updates the Q-matrix using Eq. 2.
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Algorithm 1 Multi-objective reinforcement learning for cognitive radio-based satellite communications

Require: Initial parameters (R̄, M̄ , Ēb, P̄ ,W, tr, εk, αk)
1: U← all combinations of (R̄, M̄ , Ēb, P̄ )
2: Q0 ← 0
3: Measure and compute initial state s0:
4: u0 ← Ū
5: Apply u0 and measure x0 = (R0,W0, P0,BER0)
6: Compute fdecision(x0)
7: while termination condition is not met, k = 0, 1, 2, · · · do
8: if (R̄, M̄ , Ēb, P̄ ) has changed then
9: U← all combinations of (R̄, M̄ , Ēb, P̄ )

10: end if
11: z ← uniform random number [0, 1]
12: if z> εk then . with probability 1− εk (Exploit)
13: uk ← u ∈ arg maxūQk(sk, ū)
14: else . with probability εk (Explore)
15: u← U randomly chosen action with uniform probability
16: end if
17: w̄ ← Communications goals
18: Apply uk and measure xk = (Rk,Wk, Pk,BERk)
19: Compute next state sk+1 and next reward rk+1

20: Update Qk+1(sk, uk)
21: end while

IV. System Environment

A. Satellite Communications Channel

The method proposed in this work addresses the multi-objective reinforcement learning for satellite-based
communications systems implemented via SDR in order to enable cognition. The dynamics of the channel
between a satellite and a ground station (GS) play an interesting role in determining the required radio
parameters that will allow those multi-objectives to be achieved. Different scenarios can be considered for
combinations between the satellite orbit, such as geostationary (GEO), and the GS being fixed or mobile.33

Depending on the communication mission phase, additional elements need to be taken into account during
the decision making process. For a space-to-ground point-to-point communication link, the channel is quite
different from a terrestrial one. Besides the difficulty of knowing the on-board electronics status, orbital
geometry elements increase the dynamics of the communications channel. Depending on the GS location,
the LOS might cross different sections of Earth’s atmosphere, experiencing different weather conditions if
either the GS, the satellite, or both, are moving with respect to each other.4 The scenario becomes more
complex if more than one GS, at different locations, are considered with respect to one satellite and their
relative motion, and vice versa. Furthermore, the ultimate complexity can be achieved by a scenario in
which several GSs and satellites are moving with respect to each other. Thus, each different combination
of orbital geometry and weather condition experienced by an LOS represents a whole different channel, and
might require a very specific radio parameter set in order to achieve the multi-objective optimal performance
by the transmitter–receiver pair.

Channel impairments can be derived from several different sources, including atmospheric effects, space
weather, orbital motion, obscuration, and multipath. For Ka-band frequencies (26 GHz) atmosphere effects
represent a large challenge concerning satellite communications since losses due to absorption by water vapor,
oxygen, rain, snow/ice and clouds34–36 result in slow and/or fast fading, depending on the elevation angle
as well. Also, ionospheric scintillation37 might be an issue for LOS crossing the ionosphere at low-to-mid
latitudes or polar caps, or any other region of the ionosphere after a geomagnetic storm strikes that region of
the Earth.38,39 For the SCaN Testbed, Ka-band communications is performed via GEO relay and typically
experience 2 dB of variation during a pass. However, several dB of attenuation can be experienced due to

4Varying weather conditions are also experienced for scenarios where both GS and satellite have fixed positions. In this case
the channel conditions vary slowly compared to when there is movement associated with the communicating nodes.
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multipath caused by structures surrounding the antennas onboard the ISS during clear sky conditions or
tens of dB during rainy conditions.

Figure 3. Typical SCaN Testbed direct-to-ground re-
ceive power profile.

Dynamic orbital elements include the space-
craft’s trajectory and/or orbit, relative motion be-
tween the spacecraft and its communicating node
on the ground, and changing the LOS elevation an-
gle and Doppler frequency shift. Also, positioning
of external on-board elements such as solar panels,
robotic arms and/or antennas might result in dif-
ferent multipath profiles40 affecting the reception of
the signal on the space segment. Other channel ele-
ments exclusive to satellite communications account
for the GS surroundings including its terrain profile
and material composition.41 It is assumed that the
channel is slow fading, frequency non-selective, and
has a constant noise density power.33,42

After four years of operations in low-earth orbit,
NASA’s SCaN Testbed has characterized both GEO
relay link environments as well as direct-to-ground
link conditions. Currently, NASA GRC’s ground
station operates at S-band frequencies providing nu-
merous link dynamics to challenge the communications system. Figure 3 shows a downlink signal strength
profile for a typical ISS direct-to-ground pass. Some of the slowly changing variations can be predicted based
on the antenna pattern and structural obscurations. However, the more rapidly changing variations, such as
those due to multipath, are more difficult to accurately predict.

The combination of these impairments results in a very dynamic channel behavior that affects the multi-
objective optimal performance achievement. Thus, an efficient cognition engine might be able to not only
optimize the performance for multi-objectives, but also to learn which one achieves the minimum acceptable
quality of service (QoS), given the communication mission phase. The following section presents results
obtained for the proposed RL approach for different satellite channel conditions, for GEO communicating
at Ka-band, with flexible-radio payloads onboard. Clear sky conditions are assumed through an additive
white Gaussian noise (AWGN) channel. Rain attenuation conditions are simulated through the synthesis
of attenuation time series based on ITU recommendations.34 The attenuation profile shown in Figure 4
is the time-series used for the simulation considered in this paper for the cases of rain fading. Samples of
the resultant channel time series are provided together with their learning performance within the results
section.

B. SDR parameters

SDR waveform applications already available on the SCaN Testbed provide dynamic reconfiguration of pa-
rameters such as modulation, coding, and transmit power. An increasing number of NASA’s STRS-compliant
waveforms are being designed to support cognitive radio and cognitive networking applications. Currently,
a DVB-S243 compliant waveform is being operated on the SCaN Testbed, which gives 27 modulation-coding
combinations with which to adjust for link conditions.

The adaptive parameters R, M , and Eb are presented in Table 3. M is comprised of all combinations of
the available QAM modulation constellation sizes Ms and encoding rates Mr. The action search space Ū
for the experiments in this paper is comprised of all the combinations between all the values available with
the ranges shown.

Table 3. SDR parameter ranges

Parameters Bit rate (R) Constellation size (Ms) Encoding rate (Mr) Tx gain (P )

Values [128 kbps, 1 Mbps]* [4, 16, 64] [4/7, 11/15] [1, 20]† dB

* Steps of 128 ksps.
†Transmitter gain range achievable depending on combinations of available values for Eb and R.

9 of 16

American Institute of Aeronautics and Astronautics



V. Simulation Results
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Figure 4. Sample of rain attenuation profile at Ka-band. The time-series
was synthesized using ITU recommendations34 and gives an example of how
harmful fading alone can be at this frequency band.

Any study of RL algo-
rithms involving simulation or
experimentation requires the
researcher to address the chal-
lenge of efficiently exploiting
known actions while exploring
available actions, looking for
better ones. An ideal strategy
would consist of long exploita-
tion periods mixed with short
exploration periods to iden-
tify suitable actions as quick
as possible. For comparison
reasons, four different scenar-
ios of ε values were simulated.
The first is called the “brute
force” (BF) scenario, where all
actions are evaluated once. In
this case, ε = 1 and only ex-
ploration is performed, with its duration in time being equal to the total number of possible actions. The
second and third scenarios consider fixed values for ε, 0.5 and 0.01, respectively.

The last scenario considers a varying ε that decreases with the iteration number and is reset when it
reaches a value below a threshold, in this case a value of 10−4 was assumed. The analysis of the rate at
which ε decreases and gets reset is beyond the scope of this paper and it is left as a future work.

Decisions of whether to explore or exploit consist of drawing a random number that is uniformly dis-
tributed before the transmission of each packet. The current ε has the role of serving as the threshold, since
it represents the exploration probability.

In the case of exploitation, the chosen action is the one associated with the current maximum Q-value,
computed by Eq. 2. When exploring, a random action is chosen from a uniform distribution, its corresponding
radio parameters are applied at the transmitter, and its performance is measured by the receiver. Regarding
the threshold shown in Figure 2, it is assumed zero in order to allow a more detailed study of the algorithm’s
behavior at any performance level. Also, the learning rate is initialized as 1 for each possible action and
decreased as it gets reused, making sure that selecting repeated actions does not provide new knowledge.
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Figure 5. Time-series for chosen action and multi-objective communication
performance for ε = 0.5. Knowledge of good performing actions is taken for
granted due to the fixed exploration probability.

Assuming an SNR reading
rate of 1 reading/second, each
action is used during 1 second.
Given an universe of 540 avail-
able actions, combinations of
the available tunable radio pa-
rameters, the BF scenario also
lasts 540 seconds. In order
to allow a fair comparison, all
scenarios also have the same
simulation duration as the BF.

Examples of time-series for
actions chosen and their re-
spective multi-objective per-
formance value normalized are
provided in Figure 5 for a fixed
ε, and in Figure 6 for varying
ε. The communication chan-
nel assumed was a direct link
from a GEO satellite during clear sky conditions to a fixed ground station as well as rain attenuation at
Ka-band.
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One can observe that for a fixed ε the system does not take full advantage of the knowledge previously
acquired. Thus it keeps exploring with a constant pace even after finding sufficient rewarding actions. On the
other hand, the varying ε the knowledge is used wisely with exploration being performed only sporadically.

In order to provide an overview of the multi-objective performance, each mission was simulated 1, 000
times, with a duration of 540 seconds each. The 25th, 50th and 75th percentiles for the mean multi-
objective performance of the four scenarios, for each mission, are shown in Tables 4–8. Higher percentile
values represent a better performance, since the percentiles themselves refer to multi-objective performance
levels, with the 25th percentile considered a baseline for performance evaluation between different ε values.
Having large 25th percentile values means that the lowest 25% of the multi-objective performance values
are equal or less than that percentile. In addition to performance percentiles, integral values of histograms’
areas are also provided.
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Figure 6. Time-series for chosen action and multi-objective communication
performance for varying ε. The best known actions are exploited for a while,
and eventually new ones are explored.

Histograms for BF and
varying ε scenarios, including
standard error bars for these,
for each mission are provided
in Figure 7. For all mis-
sions, the effect of using the
RL algorithm to manage ex-
ploration and exploitation pe-
riods while learning which ac-
tions were the best ones, re-
sults in a higher time spent on
those high-rewarding actions
when compared to a scenario
without this reinforced learn-
ing capability, such as the BF.

Since the multi-objective
function weights are different
for each mission, each one has
a different performance pro-
file. Independent of the profile, based on both results shown in Tables 4–8 and in Figure 7, the RL effect is
to focus on the most rewarding actions, located on the rightmost side of the BF histograms, for the whole
operation time duration.

The best performances for clear sky conditions are achieved for Missions 1 and 2, since the 25th percentile
difference between BF and varying ε scenarios, as well as their respective integral values, are the largest ones.
For instance, the improvement achieved for Missions 1 and 2 was sufficiently good that the 25th percentile
difference between BF and varying ε scenarios was 0.49 and 0.44, respectively. Also, depending on the
mission requirements multiple parameters need to be taken into consideration. Even though Mission 1 had
a larger difference value, representing an improvement of more than 3.59 times between these two scenarios,
the 25th percentile for Mission 2 was the highest among all the missions simulated.

The rain attenuation cases for all the missions had a worse multi-objective performance when compared
to results obtained under clear sky conditions. This is expected given the deep fading values present on the
attenuation profile time-series used. Mission 1 seems to be the most one affected by rain attenuation, with a
difference of 0.54 in its mean for the BF scenario, and 0.24 difference for its first quartile when compared to
results for clear sky condition. Mission 3 seems to be most immune to rain attenuation, showing the smallest
difference value for integral, 0.05, followed by Missions 4 and 5.

When comparing percentiles only for scenarios affected by rain attenuation, the 25th percentile of the
RL algorithm using the varying ε had an improvement of more than 6.8 times when compared to the system
without the RL algorithm, BF scenario, for Mission 1. Mission 5 had an improvement of more than 4.1 times
under these same conditions, followed by an improvement of more than 3.7 times for Mission 2, 3 times for
Mission 4, and 2.1 for Mission 3.
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Table 4. Multi-objective Communications Performance Distribution for Mission 1

Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε BF (rain) Varying ε (rain)

25th 0.1917 0.6109 0.5923 0.6892 0.0646 0.4393

50th 0.6476 0.6203 0.6467 0.6937 0.0978 0.4937

75th 0.6769 0.6282 0.6754 0.7095 0.3791 0.6322

Integral 0.4863 0.6224 0.6294 0.7002 0.2355 0.5266

Table 5. Multi-objective Communications Performance Distribution for Mission 2

Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε BF (rain) Varying ε (rain)

25th 0.3699 0.708 0.6559 0.8114 0.1835 0.6826

50th 0.5487 0.7151 0.7209 0.8289 0.3952 0.7148

75th 0.6903 0.7205 0.7665 0.8679 0.6024 0.8094

Integral 0.531 0.7235 0.7092 0.8428 0.4055 0.745

Table 6. Multi-objective Communications Performance Distribution for Mission 3

Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε BF (rain) Varying ε (rain)

25th 0.1861 0.3824 0.2752 0.3524 0.1348 0.2912

50th 0.2285 0.4222 0.3023 0.3791 0.1789 0.3189

75th 0.2721 0.441 0.3211 0.403 0.225 0.354

Integral 0.2308 0.4094 0.2982 0.3789 0.1897 0.3249

Table 7. Multi-objective Communications Performance Distribution for Mission 4

Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε BF (rain) Varying ε (rain)

25th 0.2379 0.4172 0.3996 0.4688 0.1164 0.3573

50th 0.3438 0.4203 0.4309 0.4758 0.1859 0.382

75th 0.4233 0.4236 0.4501 0.4934 0.3046 0.4484

Integral 0.3291 0.4251 0.4247 0.4851 0.2243 0.4023

Table 8. Multi-objective Communications Performance Distribution for Mission 5

Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε BF (rain) Varying ε (rain)

25th 0.1139 0.2506 0.2427 0.2877 0.0486 0.2005

50th 0.2375 0.2526 0.2649 0.2904 0.0792 0.2189

75th 0.2693 0.2544 0.2771 0.2979 0.1621 0.2721

Integral 0.2007 0.2613 0.2598 0.2998 0.116 0.2383
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Figure 7. Normalized histograms for average time spent on a certain multi-objective normalized performance
level for a GEO satellite-based link under clear sky conditions. For varying ε scenario, in all missions, more
time was spent at higher performance levels when compared to the BF scenario.
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VI. Application of Cognitive Engines for NASA

Applying cognitive applications to space poses a number of challenges due to the risk-adverse culture
of space missions coupled with the resource-constrained environment of space platforms. These two driv-
ing conditions will heavily influence where and when CR systems are used within mission spacecraft and
throughout the communication system.

Three areas have emerged as candidate application areas for CR systems. The different areas are node-
to-node communications, system-wide intelligence, and intelligent internetworking. The first application
entails the radio-to-radio link between mission spacecraft and ground terminal (either through relay or
direct-to-ground). Cognitive decision making may improve (increase) throughput across a communication
link by consuming otherwise unused designed link margin or mitigating impairments. Algorithms that sense
performance and understand the entire link capacity could adjust waveform settings to maximize user data
and symbol rate by minimizing coding or other overhead. Taking advantage of significant range changes
during a ground station pass or operating at reduced data rates at low elevation angles (normally outside
the traditional link design) or through weather events offers additional opportunities for additional science
data return. Signal recognition among nodes may alleviate missed opportunities due to configuration errors
or mitigate unexpected interference.

The second application of CR systems is system-wide intelligence where CR systems make operational
decisions normally performed by operators or data-intensive aspects not currently done. For example, CR
systems could be applied to relay and ground station scheduling, asset utilization (proper asset loading and
accommodating mission priority), optimum link configuration and access times, infrastructure fault monitor-
ing, and failure prediction, among others. Many of the applications will help reduce operation oversight (and
cost) and help reduce operational complexity due to the large number of possible configurations. Large data
analysis opens a new area to discover performance and operational benefits from all aspects of data collected
including: link performance, platform environment (e.g. radiation, thermal, and mechanical/vibration),
asset availability, and system performance.

Finally, as communications infrastructure becomes more network-based using commercial and interna-
tional standard protocols, CR systems may benefit the control and data functions of the communications
network. Optimizing data throughput according to QoS metrics such as bit error rate, loss packet rate,
routing decisions, store-and-forward protocols, and publish-and-subscribe techniques may benefit from cog-
nitive control. Allowing algorithms to learn network behavior, especially small networks with repeatable
data flows, may yield throughput and reliability benefits.

One notable aspect regarding CR systems for space is the need for verification or ground testing of
all operational conditions before launch. To minimize risk on orbit, missions generally test each mode of
operation prior to flight. This helps provide confidence in the on-orbit operation. Having CR systems make
unplanned and at times unpredictable changes to flight systems on-orbit will take considerable research and
technology demonstrations such as those described in this paper.

VII. Conclusion

In order to support the development of future cognitive satellite-based communication systems, a rein-
forcement learning-based algorithm design for multi-objective radio communication systems was proposed
and had its performance analyzed through simulations conducted for different communication mission goals.

For clear-sky GEO satellite channel, results demonstrated improvements of 3.59 times in the 25th per-
centile, while under rain conditions the improvement achieved was more than 6.8 times, compared to systems
without a learning algorithm under the same weather conditions. The results also demonstrated that, even
though the multi-objective performance can be improved by the proposed algorithm, depending on the com-
munication mission requirements certain choices of the exploration probability ε can be made to achieve a
specific goal, such as minimum acceptable performance level, or overall performance within a time window
period, by imposing conditions on the percentiles and integral values.

For scenarios when rain attenuation was present, all missions showed inferior performance compared to
clear-sky conditions, given the deep fading values observed at Ka-band. Simulation results showed that
Mission 1 is the most susceptible to have its performance affected in the presence of rain, whereas Mission
3 had the minimum decrease in its multi-objective performance.

Based on the improvements shown in this paper, there is a potential for RL to be further developed
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to assist cognitive satellite-based systems dealing with varying communication channels due to dynamics
originated by atmospheric and space weather events as well as the dynamics of mechanical orbit conditions
imposed to the spacecraft.

Future work is expected to further analyze the behavior of the exploration probabilities while facing
dynamic channel conditions for spacecrafts communicating in harsh environments. We also anticipate that
on-orbit tests using SCaN testbed are expected to be performed in order to evaluate the improvements
achieved by the proposed algorithm under real-world conditions.
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